iC C International Collegiate
p Programming Contest

The 2024 ICPC
Greater NY Regional Contest

Problem Set

@i

.000
ICpC Greater NY

O
A XN
@ JETBRAINS @
U
icpc global sponsor upsilon pi epsilon

programming tools honor socie ty

|ICPC NA East Division

Problems

A Stack of Gold

Average Substring Value
Balancing Art

Brownian Bears

Fences Make Good Neighbors
Leapfrog Encryption
Letter Balloons

Marching Orders

Oooh | See

Pascal Meets Boole
Pony-less Express
Repetitive Routes

Smart Password Validation

SESrXce—ITOTMMOUOm@>

Do not open before the contest has started.

This page is intentionally left blank.

Problem A
A Stack of Gold

Time Limit: 1 second, Memory limit: 2G

Lt. Columbo, arguably the best detective in the world, was faced with a problem. He was asked: if he was
placed in a room with some number of stacks of gold-colored coins, where all but one stack consisted solely
of tungsten coins, and the remaining stack consisted solely of pure gold coins, how could he determine
which stack had the pure gold coins? Oh, excuse me, there’s just one more thing ...he was also told he is
given a modern penny scale and one penny. A modern version of the penny scale operates as follows: when
you deposit a penny and put an object (or objects) on the scale, the machine displays the weight on a digital
display. The scale is extremely accurate, down to milligrams. Every coin is the same size and color, but the
tungsten coins weigh 29 260 mg each and the gold coins weigh 29 370 mg each.

Being the genius that he is, Columbo came up with the solution to figure out which stack contained the gold
coins using a single weighing (since he has only one penny for the penny scale). As an example, suppose
there are four stacks of coins labeled 1 through 4. If he took one coin from stack 1, two coins from stack
2, three coins from stack 3 and four coins from stack 4, and weighed those 10 coins together on the penny
scale, he could determine which stack had the gold coins. “How?” you might ask. Suppose all four stacks
were tungsten. The total weight of the 10 coins would be 292 600 mg. If, say, stack 1 was gold (one gold
coin in the pile that was weighed), the total weight would be 292 710 mg. If stack 2 was gold (two gold
coins in the pile that was weighed), the total weight would be 292 820 mg. So, if you know the number of
coins being weighed and the total weight of those coins, you can determine which stack has the gold coins.
Just as a reminder, given a number of stacks, s, the number of coins, ¢, being weighed will be:

s(s+1)

Cc = 9

Input
Input consists of a single line containing two integers w s, where w (87890 < w < 147774 000) is the
weight in milligrams reported by the scale and s (2 < s < 100) is the number of coin stacks. The stacks are

labeled 1 to s with 7 coins from stack ¢ moved to the scale for 1 < ¢ < s. For given values of w and s, it will
always be possible to determine which stack is composed solely of gold coins.

Output

Output consists of a single positive integer indicating which stack contains the gold coins.

Sample Input 1 Sample Output 1
292930 4 3

Sample Input 2 Sample Output 2
147774000 100 100

ICPC NA East Division Problem A: A Stack of Gold 3

This page is intentionally left blank.

Problem B
Average Substring Value
Time Limit: 1 second, Memory limit: 2G

Let s be a nonempty string consisting entirely of base-10 digits (0—9). If the length of s is n, number the
digits 1,2, 3, ..., n from left to right, and for 1 < i < j < n, let s[i, j| denote the substring consisting of the
digits from position ¢ to position j, inclusive. (It follows that we are only considering nonempty substrings.)
Assign a value to each substring that is simply equal to the largest digit in the substring. What is the average
value of the substrings of s?

Note that two different substrings may be identical (as strings), but for the purposes of this problem they are
treated as distinct. For example, if s = 1010, then s[1,2] = s[3,4] = 10 are distinct substrings (both with
value 1).

Input

The input is a single nonempty string, s, of base-10 digits. The length of s is at most 200 000.

Output

Output a line containing the average value of the substrings of s. If the average is an integer, print the integer.
If the average is a proper fraction, i.e., is equal to a/b, where a and b are positive integers and a < b, print
this fraction in lowest terms, with a ¢/’ symbol separating the numerator and denominator. If the average
is greater than 1 and does not simplify to an integer, print the whole part followed by the proper fractional
part, separated by a space, with the proper fractional part in lowest terms and formatted as described in the
previous sentence.

Sample Input 1 Sample Output 1
123 2 1/3

Sample Input 2 Sample Output 2
4084 6

Sample Input 3 Sample Output 3
1010 4/5

Sample Input 4 Sample Output 4
00000 0

ICPC NA East Division Problem B: Average Substring Value 5

This page is intentionally left blank.

Problem C

Balancing Art
Time Limit: 8 seconds, Memory limit: 2G

Pete Tencious is a world-renowned artist who specializes in mobiles. The San Francisco Museum of Art
is currently displaying a collection of his artwork entitled Balance I, Balance II, Balance 11, ..., you get
the idea. Each of these works contains two or more spheres with wires strung between them. At the ends
of each wire are a number of disks that are attached to the two spheres that the wire connects. When you
sum up the number of disks at each sphere you get the same number (hence the word “Balance”) — Pete
calls this the balance number for each mobile. On some of these wires there are also extra disks suspended
between spheres. The artist says this work represents the balance of nature (the disks attached to the spheres)
corrupted by the influence of humankind (the extra disks between the spheres). Clearly Pete has a much
better impression of nature than people.

The funny thing is that Mother Nature decided to step in and throw Pete a curve. A minor earthquake
in the Bay area has dislodged the disks, and they are now all hanging loose between spheres. Pete is
currently working on Balance CCXLI and can’t be reached, so the museum curators have to fix the mobiles
themselves. They can’t remember exactly what the balance number should be for each mobile, but they
decide it should be as large as possible, leaving as few extra disks in between the spheres as possible (they
apparently have a little better view of humankind than you-know-who). However, determining the minimum
number of disks left between the spheres is a bit difficult, so they have come to you for help.

Figure C.1 shows the state of one mobile after the earthquake, corresponding to the first sample input. Figure
C.2 shows one way the disks could be moved by the curators so that each sphere has the same number of
disks, while leaving the minimum number of disks between the spheres.

Figure C.1: After the earthquake

Input

The first line of input contains two positive integers n m, where n (2 < n < 200) is the number of spheres
in a mobile (numbered 1 to n) and m (1 < m < 500) is the number of wires connecting the spheres. This
is followed by m lines of the form s; sy d, where s1 and sy (1 < 51,82 < n,s; # sg) are two spheres
connected by a wire and d (0 < d < 10000) is the number of disks hanging on the wire after the earthquake.
There is at most one wire between any two spheres.

ICPC NA East Division Problem C: Balancing Art 7

Figure C.2: Disks moved to maximize balance number

Output

Output the minimum number of disks left hanging on the wires between spheres after the maximum balance
number has been reached.

Sample Input 1 Sample Output 1
33 1

123

13 4

2 36

Sample Input 2 Sample Output 2
5 4 16

122

152

2 32

2 4 20

ICPC NA East Division Problem C: Balancing Art 8

Problem D

Brownian Bears
Time Limit: 4 seconds, Memory limit: 2G

Dr. Ursula Major is an internationally renowned expert in the study
of bears, specifically brown bears, which are known in many parts
of North America as grizzly bears. She is most famous for her dis-
covery of an extremely rare brown bear subspecies — the Brownian
bear, whose feeding behavior seems to be guided by an intriguing fie >

mixture of regularity and randomness. Im by Alex Taylor: Used with perm

At present, Dr. Major is studying a pair of Brownian bears living on

a narrow strip of land that is oriented east-west. This territory has n evenly spaced locations where the
bears can forage for berries, and Dr. Major has labelled these locations 1, 2, ..., n from west to east. Every
morning, each Brownian bear wakes up in one of the n locations and randomly chooses to move either east
or west to the neighboring location. What is remarkable is that the probability of moving in either direction
is exactly 50%! (Dr. Major’s working theory is that this is rooted in some kind of quantum mechanical
phenomenon in the bears’ brains.) If a bear happens to start the day in one of the end locations (1 or n),
then it will randomly choose between moving to the sole neighboring location or staying where it is. After
making its choice, the bear spends the day foraging for berries in the chosen location, and then also sleeps
there that night. The next morning, the process begins all over again.

Dr. Major is particularly interested in days when the two bears forage together, i.e., in the same location,
so she plans to observe them over a period of time, possibly as long as a month (or until her funding runs
out). At the beginning of the first observation day, the two bears wake up in different locations. Can you
help Dr. Major determine the probability that the two bears will forage together for at least one day during
the course of her experiment?

Note that the two bears can move past each other without foraging together. For example, if the bears start a
particular day in locations 4 and 5, and if the bear in location 4 moves east and the bear in location 5 moves
west, then the bears simply pass each other that morning without foraging together.

Input

The input consists of a single line containing four integers, n y d, where n (2 < n < 100) is the number
of locations, z and y (1 < z,y < n,x # y) are the locations where the two bears wake up at the beginning
of the first observation day, and d (1 < d < 31) is the number of observation days.

Output

Output a line containing the probability that the two bears forage together for at least one day during the
d observation days. Express this probability as a fraction a/b in lowest terms, where a is a non-negative
integer and b is a positive integer. See the sample outputs for examples.

ICPC NA East Division Problem D: Brownian Bears 9

Sample Input 1

Sample Output 1

41 2 2 3/8
Sample Input 2 Sample Output 2
6 2 5 2 0/1
Sample Input 3 Sample Output 3
2121 1/2

ICPC NA East Division Problem D: Brownian Bears

10

Problem E
Fences Make Good Neighbors

Time Limit: 4 seconds, Memory limit: 2G

The King of Gletrian has a large estate that he wishes to divide up into triangular parcels which he then
plans to give to deserving (that is, wealthy) followers. The estate is a convex polygon and already has fences
around its borders, so the only cost now will be putting in new fences to perform the partitioning of the land.
All fences will lie on straight lines between existing corners of the estate and no two fences will cross each
other. Being fiscally minded (that is, cheap) he wants to put in the minimum amount of fencing possible.

But there is a problem (there always seems to be, doesn’t there!). He has two sons who already have homes
on the estate. One is a cute young lad and the other is a bit obtuse, but the problem lies in that they don’t
really get along with each other. Because of this, placing a single fence between their two parcels of land
is out of the question — there will be constant bickering between them and at worst some type of physical
altercation. However, the King has hope that his two sons might eventually learn to appreciate one another
and he feels that all is needed is one good arbiter to serve as a liaison between them. To accomplish this
the King wants to place exactly two fences between the brother’s parcels, separating the brothers’ lands by
a single parcel where he’ll place some voluntary (that is, conscripted) person to serve as go-between. Given
these constraints, the King still wants to minimize the cost of the project, which means minimizing the
length of fencing used. In addition, to avoid the brothers’ houses, no potential fence which passes directly
through a brother’s location may be used in the triangulation.

An example (corresponding to Sample Input 1) is shown in Figure E.1, where the brother’s locations are
indicated by the two plus signs. The partitioning to the right, while using less fencing, is not a solution since
there are more than two fences between the brothers’ locations. A correct triangulation is shown on the left.

(@) ()

Figure E.1: Sample Input 1. (a) Correct solution. (b) Incorrect solution.

Input

Input starts with a single integer n (6 < n < 500), indicating the number of corners of the estate. Following
this are n pairs of integers x; y; (||, |y;| < 3 000) specifying the location of each corner, given in clockwise
order. No two corner locations are the same and the polygon formed by connecting these corners is convex.
No three consecutive corner locations are collinear. The last two lines each contain a pair of coordinates:
the first of these lines contains bx; by (|bx1], |byi| < 3000), indicating the location of the first brother, and
the second contains bxza bys (|bxz|, |by2| < 3000), indicating the location of the second brother. The two

ICPC NA East Division Problem E: Fences Make Good Neighbors 11

brother’s locations are distinct and lie within the interior of the polygon. All coordinates are in kilometers.

Output

Output the minimum length of fencing in kilometers needed to satisfy all the constraints specified above.
Answers within an absolute error of 1073 of the judges’ answer will be deemed correct. If it is not possible
to satisfy the conditions stated above, output the word ITMPOSSIBLE.

Sample Input 1

Sample Output 1

6

0 -50
-40 10
0 50
80 50
120 0
80 =50
-10 O
100 O

354.553591

Sample Input 2

Sample Output 2

6

0 -50
-30 0
0 50
90 50
120 0
90 -50
05

90 -5

IMPOSSIBLE

Sample Input 3

Sample Output 3

12

0 100
50 86
86 50
100 O
86 —50
50 -86
0 -100
-50 -86
-86 -50
-100 O
-86 50
-50 85
60 60
-60 -60

1113.370332

ICPC NA East Division Problem E: Fences Make Good Neighbors

12

Problem F
Leapfrog Encryption
Time Limit: 1 second, Memory limit: 2G

We’ve come up with a new encryption method we call Leapfrog Encryption. It is a key-based encryption
scheme where an alphabetic key specifies how letters in the plaintext (the text to be encrypted) are placed in
the ciphertext (the resulting encrypted string). Here’s how Leapfrog Encryption works:

1. Remove all non-alphabetic characters from the plaintext and convert all remaining letters to lowercase.

2. Convert the letters of the key to their location in the alphabet +1 (so that ‘a’ converts to 2, ‘b’ converts
to 3 and so on). This gives us a sequence of numbers dy, da, . . . , d, where n is the length of the key.

3. Going left-to-right, place the first letters in the plaintext in every d;-th location of the ciphertext until
you run out of positions in the ciphertext (where the length of the ciphertext is equal to the number
of letters in the plaintext). So for example, if d; = 5 the first letter in the plaintext goes in position 5
of the ciphertext (numbering the first location in the ciphertext as position 1), the second letter in the
plaintext goes in position 10 in the ciphertext, and so on.

4. Repeat this with ds but this time going right-to-left through the ciphertext, only counting the empty
positions (leapfrogging over the letters already in the ciphertext).

5. Continue with d3, dy4, etc., alternating the direction you go through the ciphertext each time.

6. If there are still letters left in the plaintext after using d,,, fill in the remaining empty locations in the
ciphertext with these remaining letters, again going in the opposite direction of the previous pass (this
is equivalent to having d,4+1 = 1).

For example, if our plaintext is “Send more monkeys!” and our key is “bea”, the encryption proceeds as
follows:

b— 3, leftto-right: _ _ s _ _ e __n_ _d_ _m
e —6,rightto-left: _ _ s _ _eo_n_ _d_ _m
a— 2, lefttorightt _ r s _eeo_nm_do_m
last pass, right-to-left: s r s y e e o enmk donm

Decryption is done by . .. hey, you know what? We’re going to let you figure that out.

Input

The first line of input contains two strings ¢ k where ¢ is either E or D indicating whether to perform
encryption or decryption and k is the lowercase alphabetic key. The length of £ will be between 1 and 100,
inclusive. The second and final line of input contains the plaintext to encrypt (if ¢ is E) or the ciphertext to
decrypt (if ¢ is D). This string is non-empty and has a maximum length of 2 000. A ciphertext string consists
of lowercase letters only, while a plaintext string may contain uppercase letters, numbers, punctuation and
spaces as well (all counted as part of the length of the string) and is guaranteed to contain at least one letter.

ICPC NA East Division Problem F: Leapfrog Encryption 13

Output

Output the encrypted or decrypted text. Your output should only contain lowercase letters.

Sample Input 1

Sample Output 1

E bea srsyeeoenmkdonm
Send more monkeys!

Sample Input 2 Sample Output 2

D bea sendmoremonkeys
srsyeeoenmkdonm

Sample Input 3 Sample Output 3

D zyxwvutsrgponmlkjihgfedcba leapfrog

lafogrpe

ICPC NA East Division Problem F: Leapfrog Encryption

14

Problem G

Letter Balloons
Time Limit: 1 second, Memory limit: 2G

You are organizing a programming contest, and have decided that the first
team to solve each problem will get a balloon in the shape of the problem’s
letter. For example, suppose there are twenty-three problems in the contest,
labeled A through W. The team members for Wossa Motta University are
hoping to be first to solve problems M, U, and W so that they can fly their
university’s initials above their programming station. In fact, a lot of teams
have the same idea: try to be first-solvers of problems that spell out their
school’s abbreviation. It might be possible for both Wossa Motta U. and the
Spittinyer Institution to achieve this goal, but neither will be able to do so if
Muddinyer Institute manages to solve problems M and I before they do (we Gl
are assuming there will never be a tie for the first solution to any problem). NightCafe
On the other hand, Muddinyer I. can’t achieve it if either Wossa Motta U. or

Spittinyer I. solves M or I first. Schools like Toe Tac Tech are out of luck no matter what, since a team can
get at most a single letter balloon for any problem. And Xerxes College is also out of luck because there is
no problem X in this example.

You’ve been wondering—what is the maximum number of teams that can proudly display their school’s
initials with “first-solver” balloons at the end of the contest?

Input

The first line of input contains two integers p ¢, where p (1 < p < 26) is the number of problems in the
contest, and ¢t (1 < ¢t < 20) is the number of teams. Problems are labeled with the first p letters of the
alphabet. Each of the following ¢ lines contains a nonempty string of at most 80 uppercase letters describing
a school’s initials. There is only one team from each school, but several schools may have the same initials.

Output

Output a single integer consisting of the maximum number of teams that can be first solvers of all the
problems that form the initials of their school name.

Sample Input 1 Sample Output 1

23 5 2
WMU
ST
MI
TTT
XT

ICPC NA East Division Problem G: Letter Balloons 15

https://creator.nightcafe.studio/

Sample Input 2

Sample Output 2

6 6
ABC
BDE
ABE
BF

BF

CEF

1

ICPC NA East Division Problem G: Letter Balloons

16

Problem H
Marching Orders

Time Limit: 1 second, Memory limit: 2G

Dean Bob Roberts is in charge of the order in which the professors of his college march in the graduation
ceremonies. Because of complaints among certain professors from the newly created DEI Studies Depart-
ment, it has been decided that the order in which they march should not be based on seniority but should be
random. Bob thinks this is fine, and to be totally transparent he has communicated the following method he
will use to create the marching list: He starts with an alphabetically ordered list of n professors numbered
0,1,...,n — 1 and a non-negative integer m < 10°. Then the first person in the marching list is the one in
position m mod 7 in the alphabetic list. This shortens the alphabetic list by one, shifting down all those in
positions greater than m mod 7. The second person in the marching list is the one in position m mod (n—1),
and so on.

For example, assume we have 6 professors A, B, C, D, E and F. If m = 11679, then the marching list is
created as follows:

n | mmod n | alphabetic list | marching list
6 3 ABCDEF D

5 4 ABCEF DF

4 3 ABCE DFE

3 0 ABC DFEA
2 1 BC DFEAC
1 0 B DFEACB

This sounds fair, but is not as transparent as some professors would like as Dean Roberts does not make
public the value of m that he uses. This makes it difficult to determine if he is actually following the method
he has stated or has just selected the marching order based on his personal whims and biases. What the
faculty would like to know is, for a given marching order, is there a value of m which would produce that
order?

Input
The first line of input contains a single decimal integer n (5 < n < 20), the number of professors who will

be marching. The second line consists of a string containing a permutation of the first n uppercase letters of
the alphabet, giving the proposed marching order.

Output

If the given marching order could not have come from the algorithm, output a single line containing the word
NO. Otherwise, output two lines, the first containing the word YES and the second containing the smallest
non-negative value of m which could produce the given marching order.

ICPC NA East Division Problem H: Marching Orders 17

Sample Input 1

Sample Output 1

6 YES

DFEACB 39

Sample Input 2 Sample Output 2
7 NO

DFEGACB

ICPC NA East Division Problem H: Marching Orders

18

Problem |
Oooh | See

Time Limit: 1 second, Memory limit: 2G

Captain O’Capten has hidden some treasure and created a map to mark where it is buried. Rather than using
‘X’ to mark the spot, he has decided to obfuscate the location by using a grid of uppercase O (the letter O)
characters and 0 (the number 0) characters. The treasure’s position is given by the location of a O character
surrounded on all sides by 8 O characters. That is, a O character with an O immediately above, below, to the
left, to the right, diagonally above to the left, diagonally above to the right, diagonally below to the left, and
diagonally below to the right.

Captain O’Capten wants to recover the location of his treasure but he is finding his map hard to read (huh,
go figure). Help Captain O’Capten find the location of his treasure, or exclaim Oh no! if such a location
is not marked on the map or there is more than one such location.

Input

The first line contains two integers r and ¢ (1 < r,¢ < 50), where r indicates the number of rows and ¢
indicates the number of columns of characters in the map. Rows are numbered 1 to r, top to bottom, and
columns are numbered 1 to ¢, left to right. This is followed by r lines, each with ¢ characters, where each
character is either O or 0.

Output

If there is no 0 character surrounded on all sides by 8 O characters, then output one line consisting of the
exclamation, Oh no!. If there is more than one O character surrounded on all sides by 8 O characters,
then output one line consisting of the exclamation, O0h no! N locations, with the number of locations
instead of N. If there is exactly one O character surrounded on all sides by 8 O characters, then output one
line containing two integers. The first integer is the index of the row of the O character and the second
integer is the index of the column of the 0 character.

Sample Input 1 Sample Output 1
36 25

000000

000000

000000

ICPC NA East Division Problem I: Oooh I See 19

Sample Input 2

Sample Output 2

53
000
000
000
000
000

Oh no! 2 locations

Sample Input 3

Sample Output 3

4 4

0000
0000
0000
0000

Oh no!

ICPC NA East Division Problem I: Oooh I See

20

Problem J

Pascal Meets Boole
Time Limit: 1 second, Memory limit: 2G

Many people are familiar with Pascal’s Triangle, a triangular arrangement of integers named after the French
mathematician and philosopher Blaise Pascal (1623-1662). If we number the rows of Pascal’s Triangle
1,2,3,..., starting from the top, then row 7 contains r elements, which we will number 1,2, ... r from
left to right. The 1% and ™ elements in row 7 are set equal to 1, and for » > 3 and 1 < i < r, element i in
row 7 is the sum of elements ¢ — 1 and ¢ in row r — 1. More informally, each “non-edge” element is the sum
of the two elements immediately above it. Figure J.1(a) depicts the first 8 rows of Pascal’s Triangle.

1 1
11 1 1
1 21 1 0 1
1 3 3 1 1 0 0 1
1 4 6 41 1 0 1 0 1
1 5 10 10 5 1 1 00 0 0 1
1 6 15 20 15 6 1 1 01 1 1 0 1
1 7 21 3 35 21 7 1 1 0 0 0 0 0 0 1
(a) (b)

Figure J.1: (a) Pascal’s Triangle, (b) Pascal-Boole triangle for function 1000

But what if we consider a rule other than standard addition for combining values? Since the edge elements
are bits (1’s), a natural option is to use any two-input Boolean function, named after the English mathemati-
cian and philosopher George Boole (1815-1864). For example, the Boolean function given by the following
truth table generates the triangle depicted in Figure 1(b) (where we also show the first 8 rows). In this truth
table, x and y correspond to elements ¢ — 1 and 4, respectively, in row r» — 1, and f(z,y) is the resulting
element ¢ in row 7.

| flzy) |
1

Y
0
1 0
0 0
1 0

In general, if we label the bits in the rightmost column of any such truth table bgg, b1, b19, b11 from top to
bottom, then we can compactly represent a two-input Boolean function by the 4-bit string bygbg1b10b11- S0
the example function above is represented by 1000.

Your challenge is to answer two kinds of questions about ‘“Pascal-Boole” triangles:

1. For a given Boolean function, f, what is the bit in row 7, position ¢?
2. For a given Boolean function, f, how many 1’s are there in the first rows?

ICPC NA East Division Problem J: Pascal Meets Boole 21

Input

The first line of input contains an integer, n (1 < n < 250), the number of test cases. This is followed by n
lines, each of which has one of two forms:

1. fBri
2. fN7r

In both cases, f is a 4-bit binary string representing a two-input Boolean function, and 7 is an integer
(1 < r < 10%). In the first case, i is an integer (1 < i < 7).

Output

For a test case of the form f B r 4, output a line containing the bit in row r, position ¢ of the Pascal-Boole
triangle generated using f. For a test case of the form f N r, output a line containing the number of 1’s in
the first r rows of the Pascal-Boole triangle generated using f.

Sample Input 1 Sample Output 1
3 1

1000 B 5 3 28

1111 N 7 0

0100 B 6 4

ICPC NA East Division Problem J: Pascal Meets Boole 22

Problem K
Pony-less Express
Time Limit: 8 seconds, Memory limit: 2G

Howdy, pardner! You’ve been put in charge of mail delivery in these here parts. Your headquarters is in
Capital City, and Miss Penelope has asked us to tell all of the local farmsteads about her fashionable doin’s.
The roads hereabouts were built so that each farmstead connects to Capital City by only one set of roads,
which may connect through multiple other farmsteads. Each road takes exactly one day to travel on a horse.

Each farmstead wants to receive news on their own specific timetable (so as not to distract the hired hands
from their work), and gets peeved if the delivery misses the desired date, either early or late. Specifically,
each farmstead ¢ has a perfect date D; for receiving news. If the news arrive on day d, the anger level at
the farmstead is C;(D; — d)?. Obviously, we want to minimize the total anger level over all the farmsteads,
so we need to get on our horses and send this important information to each farmstead as close to their
desired date as possible! The only problem is ...well ...we actually don’t HAVE any horses. Instead, we
can requisition exactly one horse from each location (farmstead or Capital City) each day, ride it for 1 day,
and let it return to its starting location at the end of the day (don’t worry, these horses know how to find their
way back). The next day, another rider can take that horse and travel to a different location (if necessary).
This process repeats in all of the farmsteads as well as Capital City.

Oh, and one more thing: we ain’t payin’ riders to sit idle at any farmstead, gittin’ into who knows what kind
of trouble. So if news arrives at farmstead ¢ on day d and there are m roads leading to m other farmsteads
that have not received any news yet, a horse will leave farmstead ¢ on each day d + 1,d + 2, ...d 4+ m until
every neighboring city has been visited, even if waiting extra days might lead to lower anger levels for some
of the farmsteads.

For example, consider the layout of farmsteads shown in Figure K.1 (corresponding to Sample Input 1),
where the C;, D; values are shown to the left of each farmstead. The optimal way to deliver the news is as
follows:

Day 1: send a horse from Capital City to farmstead 3

Day 2: send a horse from Capital City to farmstead 1 and a horse from farmstead 3 to farmstead
7

Day 3: send a horse from Capital City to farmstead 2, a horse from farmstead 1 to farmstead 4
and a horse from farmstead 3 to farmstead 6

Day 4: send a horse from farmstead 1 to farmstead 5

The total anger level, adding up from farmstead 1 to 7, is 3(1 — 2)? +3(2 - 3)2 +2(2 — 1)2 +2(4 — 3)% +
1(6-4)2+33-3)2+4(1-22=3+3+2+2+4+0+4=18.

Can you help us figure out just how angry people will be in total, so we know what we’re in fer?

Input
The first line of input contains a positive integer n (n < 200) indicating the number of farmsteads, numbered

1 to n, with Capital City labeled 0. Following this are n lines each containing three integers c d r (1 < ¢ <
20,1 < d < n,0 < r < n), where the i of these lines specify the C; and D; values for the i*" farmstead

ICPC NA East Division Problem K: Pony-less Express 23

Figure K.1: Example layout.

and r indicates that there is a road from farmstead 7 to farmstead r (or Capital City if » = 0). The roads are
set up so that there is a unique path between any two farmsteads, and between each farmstead and Capital
City.

Output

Output the minimum anger level that can be achieved assuming the first horse leaves Capital City and arrives
at a first farmstead on day 1.

Sample Input 1 Sample Output 1

18

I VI =\ S \C R CS ROV N |

R w o DN
w w kL P O o o

Sample Input 2 Sample Output 2
3 0

o B O
w =N
= o N

ICPC NA East Division Problem K: Pony-less Express 24

Problem L
Repetitive Routes
Time Limit: 8 seconds, Memory limit: 2G

Tory operates a dial-in mobility service where customers can book a vehicle to come and pick them up
from one location and drive them to another location to be dropped off. The vehicles used can seat many
passengers, so sometimes additional stops are made along the way to pick up and drop off other passengers.
Users of the service are generally tolerant of some inefficient routes, but they are less tolerant of revisiting
a location that they have visited at least once on their journey already. Tory has come up with a sequence of
pickups and drop offs to serve all of the passengers but he wants to know how many complaints he is likely
to receive. From past experience, Tory knows that he can expect one complaint for each time a customer
returns to a location that they have already been to on their journey. Note that this means that the same
customer may lodge multiple complaints, and possibly for visiting the same location more than two times!
Given a sequence of pickups and drop offs and their locations, determine how many complaints Tory can
expect to receive.

The customer’s pickup location and drop off location both count towards locations that they may return to
and complain about. Consecutive pickups or drop offs at the same location also count as repeated visits to
the same location for anyone in the vehicle at the time. The customer’s drop off location may be the same
as their pickup location. As per above, the customer will complain about this!

Input

The first line of input is the number of customers, n (1 < n < 200000). This is followed by 2n lines,
each consisting of two integers. The first is a customer number from 1 to n and the second represents
a location and is in the range 1 to 2n. Distinct location numbers correspond to distinct locations. Each
customer number will appear exactly twice. The first occurrence of customer number C' corresponds to the
pickup of customer C' and the second occurrence of customer number C' corresponds to the drop off. All
lines in between correspond to locations visited and pickups and drop offs completed while customer C' is
in the vehicle. Customer 1 will be the first customer to be picked up. Customer C' will be picked up before
customer C' + 1 is picked up. Similarly, location 1 will be the pickup location of customer 1 and a location
L + 1 will only be visited if location L has been visited. There is no limit on the number of passengers that
can be in the vehicle at the same time.

Output

Output a single integer, the number of complaints Tory can expect to receive for the sequence of pickups
and drop offs.

ICPC NA East Division Problem L: Repetitive Routes 25

Sample Input 1

Sample Output 1

Wk & D> wWw NN PP D
DWW NN W N

5

Sample Input 2

Sample Output 2

PN WS W N
e e el

16

ICPC NA East Division Problem L: Repetitive Routes

26

Problem M

Smart Password Validation
Time Limit: 1 second, Memory limit: 2G

People often make errors when entering passwords for one of their many accounts. This is becoming more
of a problem with the rather lengthy passwords that many online portals require (the more characters in
the password, the more chance there is of making a typing mistake). Practitioners of the “touch typing”
technique are prone to make serious errors if one of their hands is not in the proper home row position when
typing, since touch typists do not need to look at the keyboard as they type. This can cause all characters
typed by a misplaced hand to be “one key off”. E.g., on a QWERTY keyboard, “lion” might become “kuib”’
if the right hand is placed one key to the left of normal home position.

The Frobozz Magic Security Company has decided to implement a new password validation algorithm
that takes into account some common mistakes (but not all) made by folks when entering passwords on a
QWERTY-style keyboard (see Figure M.1).

This is the left side of the keyboard This is the right side of the keyboard
BE | @ # $ % * & * () & +
= 1 2 3 4 5 6 T 8 9 0 =
(} |

O
CAPS LOCK A [s]

iz
SHIFT

[T ¥ u

(2]
—

BHN v

Figure M.1: QWERTY keyboard

The effect of pressing CAPS LOCK is limited to alphabetic characters and toggles the effect of the shift key
for those characters. In others words, when CAPS LOCK is not in effect, all letters are typed as lowercase
unless one or both shift keys are pressed to produce an uppercase letter. The opposite behavior occurs when
CAPS LOCK is on—uppercase is the default unless one or both shift keys are pressed, producing lowercase
letters. The algorithm designers assume that the state of the CAPS LOCK key will not change in the middle
of entering a password.

Their algorithm looks for deviations from a correct sequence of keystrokes. For example, if the correct
password is “ALg=", the correct sequence, using the keyboard above, is “SHIFT-A, SHIFT-L, G, SHIFT-
8. If the user were to accidentally hit the CAPS LOCK key before entering the password, but then used
the correct keystroke sequence, they would end up typing “alG*". Likewise, if a touch typist accidentally
placed the fingers of the left hand one space to the right of the correct position, made no other errors, and
attempted to follow the correct sequence (unaware of the shift in finger positions), they would type “SLh~".
And if, in addition, they also accidentally activated the CAPS LOCK key before entering the password,
they would type “s1H«”. Finally, a user might accidentally insert or delete a character. For example, the
password “ALg*” might be mistyped as “AL*” or “ALLg*”.

The Frobozz Magic Security Company has decided to permit certain deviations, or combinations of devia-
tions, from the correct sequence, as described in Figure M.2. At most one of the LS, RS, EC and MC errors

ICPC NA East Division Problem M: Smart Password Validation 27

Name

Acronym

Description

Examples

Left side off by one

LS

All characters on the left side of the
keyboard are shifted right by one
key. The left-shift key shifted right
by one key is still the left-shift key.

FlatHead = GlsyHrsf

Right side off by one

RS

All characters on the right side of
the keyboard are shifted left by one
key. The right-shift key shifted left
by one key is still the right-shift key.

FlatHead = FkatGead

Single extra character

EC

The entered password has an extra
character

Zorkmid = Zorkmiid (extra i)

Single missing character

MC

The entered password is missing a
character.

FCD#3 = FCD3 (missing the #)

CAPS LOCK was in effect
by mistake

CL

All lowercase letters appear as up-
percase and all uppercase letters ap-
pear as lowercase

WE do it! = we DO IT!

Figure M.2: Permitted Error Types

is permitted, but any of these may occur in conjunction with a CL error.

Input

There are multiple lines of input. The first line contains a string, p, which is the correct password (2 <
length(p) < 24). The second line contains a single positive integer n (1 < n < 1000), which is the number
of lines that follow. Each of the following n lines contains a single password to test, ¢; (length(p) — 1 <
length(¢;) < length(p) + 1). The characters for all passwords come only from those that appear on the
QWERTY keyboard picture above, as well as the lowercase letters.

Output

Output consists of n lines. For each ¢; the line should consist of the word YES if ¢; matches the password p
using Frobozz’s algorithm, NO if it does not.

Sample Input 1

Sample Output 1

Password="‘A:’
9
Password="‘A:’
PASSWORD="‘a:’
Psddeotf=1S:"
OASSWIRD-‘al;
Password="A:’x
PASWORD="'a:’
PASSWORD=‘a:’X
Osddeitf-1SL;
Psdeotf=1S:"

YES
YES
YES
YES
YES
YES
YES
NO

NO

ICPC NA East Division Problem M: Smart Password Validation

28

