

The 2023 ICPC Greater NY Regional Contest

Problem E
 Three Spheres and a Tetrahedron

Time limit: 2 seconds

Given a tetrahedron $O A B C$ with vertices O, A, B and C.
There is a sphere, $S 1$ (red, center $Q 1$), inscribed in the tetrahedron tangent to the inside of each face $O A B$ (gray), $O A C$ (brown), $O B C$ (magenta) and $A B C$ (cyan and black).

There is a second sphere, $S 2$ (green, center $Q 2$), tangent to the (extended) inside of $O A B, O A C$ and $O B C$ and to the outside of $A B C$. (There is actually such a sphere for each face, tangent to the outside of the face and the inside of the other extended faces).

There is a third larger sphere, $S 3$ (blue, center $Q 3$), which passes thru vertices A, B and C and is tangent to each of $S 1$ and $S 2$ so the outside of the smaller spheres is tangent to the inside of the largest sphere (see Figure 1, below, for two different views. Triangle $A B C$ is cyan in the first picture and black in the second one for clarity):

Figure 1
The following figures give several views of the tetrahedron and spheres.
Figure 2 shows the view along $O A$, which shows the two smaller spheres tangent to $O A B$ and $O A C$ (left). The view along $B C$ shows the two smaller spheres tangent to $O B C$ and tangent on opposite sides of $A B C$ (right):

The 2023 ICPC Greater NY Regional Contest

Figure 2

Figure 3 shows $S 3$ passing through A, B and C and tangent to $S 1$ and $S 2$. On the left, the view perpendicular to the plane of triangle $A, B, Q 3$ shows $S 3$ passing through A and B. In the center, the view perpendicular to the plane of triangle $A, C, Q 3$ shows $S 3$ passing through A and C. On the right, the view perpendicular to the plane of triangle $Q 1, Q 2, Q 3$ (the centers of the three spheres) shows $S 1$ and $S 2$ tangent to the inside of $S 3$.

Figure 3
Write a program which takes as input the vertices O, A, B and C and computes the center and radius of the big sphere (which entails finding the other two spheres).
O will be the origin ($0,0,0$). A will lie on the positive x-axis ($A x, 0,0$), B will be on the $x y$-plane ($B x, B y, 0$) and C will be in the first orthant ($C x, C y, C z$). $A x, B y$ and $C z$ will be strictly positive and the remaining values will be non-negative.

The 2023 ICPC Greater NY Regional Contest

Input

The input consists of a single line containing six double precision decimal values $A x, B x, B y, C x, C y$ and $C z$ in that order (as described above), $(0<A x, B y, C z \leq 10)$ and $(0 \leq B x, C x, C y \leq 10)$.

Output

The single line of output contains four decimal values to four decimal places: center ${ }_{x}$, center $_{y}$, center $_{z}$ and radius of the big sphere.

Sample Input 1	Sample Output 1							
2	3	2	3	1	4	2.8563	0.8218	1.8305

Sample Input 2
Sample Output 2

1	0	2	0	0	3	$1.0000 \quad 1.2500$	1.6667

This page is intentionally left blank.

