

The 2022 Greater NY Regional Contest

D • Counting Pythagorean Triples

Time Limit: 2 seconds
Memory Limit: 128MB
A Pythagorean triple is a set of three positive integers, $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c}, for which:

$$
a^{2}+b^{2}=c^{2}
$$

A Pythagorean triple is a Primitive Pythagorean Triple (PPT) if $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} have no common factors.
Write a program which takes as input a positive integer, \boldsymbol{n}, and outputs a count of:

1. The number of different $P P T$ s in which \boldsymbol{n} is the hypotenuse (\boldsymbol{c}).
2. The number of non-primitive Pythagorean triples in which \boldsymbol{n} is the hypotenuse (\boldsymbol{c}).
3. The number of different PPTs in which \boldsymbol{n} is one of the sides (\boldsymbol{a} or \boldsymbol{b}).
4. The number of non-primitive Pythagorean triples in which \boldsymbol{n} is the one of the sides (\boldsymbol{a} or \boldsymbol{b}).

For the same $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}: \boldsymbol{b}, \boldsymbol{a}, \boldsymbol{c}$ is the "same" as $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ (i.e it only counts once). Non-primitive Pythagorean triples are Pythagorean triples which are not PPT.

For example, in the case of $\boldsymbol{n}=\mathbf{6 5}$, the following are the cases for each of the criteria above:

1. 33, 56, 65; 63, 16, 65
2. 39, 52, 65; 25, 60, 65
3. 65, 72, 97; 6521122113
$4.65,420,425 ; 65,156,169$

Input

Input consists of a single line containing a single non-negative decimal integer \boldsymbol{n}, ($3 \leq \boldsymbol{n} \leq 2500$).

Output

There is one line of output. The single output line contains four decimal integers:
The first is the number of different PPTs in which \boldsymbol{n} is the hypotenuse (\boldsymbol{c}).
The second is the number of non-primitive Pythagorean triples in which \boldsymbol{n} is the hypotenuse (\boldsymbol{c}).
The third is the number of different PPTs in which \boldsymbol{n} is the one of the sides (\boldsymbol{a} or \boldsymbol{b}).
The fourth is the number of non-primitive Pythagorean triples in which \boldsymbol{n} is the one of the sides (\boldsymbol{a} or b).

The 2022 Greater NY Regional Contest

Sample 1:

Sample Input	Sample Output
65	2 2 2

Sample 2:

Sample Input	Sample Output	
64	$0 \quad 0 \quad 1 \quad 4$	

Sample 3:

Sample Input	Sample Output
2023	022 5

