

The 2022 Greater NY Regional Contest

B • Sum of Remainders

Time Limit: 2 seconds
Memory Limit: 128MB
Given a multiset (elements may be duplicates), \mathbf{K} of integers $>=2$, the sum of remainders function associated with $\mathbf{K}, \mathbf{S}_{\mathbf{K}}$, defined on non-negative integers, \mathbf{n}, is given by:

$$
S_{K}(n)=\sum(k \text { in } K \mid n \bmod k)
$$

For instance, if $\mathbf{K}=\{2,5,5,11\}$,

$$
S_{K}(23)=23 \bmod 2+23 \bmod 5+23 \bmod 5+23 \bmod 11=1+3+3+1=8
$$

Note that $\mathbf{S}_{\mathbf{K}}(0)=0$ for any \mathbf{K}.
For this problem you will write a program which takes as input the values of $\mathbf{S}_{\boldsymbol{K}}(\boldsymbol{n})$ for \boldsymbol{n} from 1 to \mathbf{N} for some unknown multiset \mathbf{K}. The program will output the number of integers in \mathbf{K} followed by the integers in \mathbf{K} in non-decreasing order.

Input

Input consists of multiple lines. The first line contains a single decimal integer $\boldsymbol{N},(1 \leq \boldsymbol{N} \leq 100)$, which is the number of values of $\mathbf{S}_{\mathrm{k}}(\boldsymbol{n}),(1<=\boldsymbol{n}<=\boldsymbol{N})$, that follow. The following lines contain the \boldsymbol{N} values as space separated decimal integers, 10 values per line (except perhaps for the last line).

Output

There is one line of output containing a space separated sequence of decimal integers. The first value is the number, \boldsymbol{m}, of integers in the multiset \mathbf{K}. This is followed by the \boldsymbol{m} integers of the multiset \mathbf{K} in non-decreasing order. Note: if a value is a member multiple times, it should appear in the list that many times.

The 2022 Greater NY Regional Contest

Sample 1:

Sample Input	Sample Output
16	425511
$\begin{array}{lllllllllll}4 & 6 & 10 & 12 & 6 & 8 & 12 & 14 & 18 & 10\end{array}$	
$\begin{array}{lllllll}3 & 5 & 9 & 11 & 5 & 7\end{array}$	

Sample 2:

Sample Input	Sample Output
20	3367
$\begin{array}{llllllllll}3 & 6 & 6 & 9 & 12 & 6 & 2 & 5 & 5 & 8\end{array}$	
$\begin{array}{lllllllllll}11 & 5 & 8 & 4 & 4 & 7 & 10 & 4 & 7 & 10\end{array}$	

