ICPC North America Regionals 2020

K•Stern's Sequence

Stern's Triangle is similar to Pascal's Triangle in that some values in each row are the sums of values in the previous row. In this case the previous row values are also copied down:

Row \mathbf{n} has $\mathbf{2}^{\mathbf{n}} \mathbf{- 1}$ elements $\mathbf{S (n , k) . ~ W h e r e : ~}$
$\mathbf{S}(\mathrm{n}, \mathrm{k})=\mathbf{0}$ for $\mathrm{k} \leq \mathbf{0}$ or $\mathrm{k} \geq \mathbf{2 n}^{\mathrm{n}}$
$S(1,1)=1$
$S\left(n+1,2^{*} k\right)=S(n, k)$ for $n \geq 1$
$S\left(n+1,2^{*} k+1\right)=S(n, k)+S(n, k+1)$
If we align the $\mathbf{S}(\mathbf{n}, \mathbf{k})$ values so $\mathbf{S}(\mathbf{n} \mathbf{+ 1}, \mathbf{k})$ is directly below $\mathbf{S}(\mathbf{n}, \mathbf{k})$, we get:
1
111
1121211
112132313231211
1121323143525341435253413231211
112132314352534154738572758374515473857275837451435253413231211

We see that for \mathbf{n} sufficiently large, $\mathbf{S (n + 1 , k})=\mathbf{S (n , k})$.
The sequence of these limiting values in called Stern's Diatomic Sequnce:
$b(1), b(2), b(3), \ldots$
It has the property that for every positve rational number, \mathbf{r}, there is exactly one value \mathbf{k} for which $r=b(k) / b(k+1)$.

For example: $3 / 5=\mathbf{b}(10) / \mathbf{b}(11)$
Write a program which takes as input a rational number \mathbf{p} / \mathbf{q} in lowest terms and outputs the value \mathbf{k} for which $\mathbf{p}=\mathbf{b}(\mathbf{k})$ and $\mathbf{q}=\mathbf{p}(\mathbf{k + 1})$. This number can get quite large, so out put it modulo the large prime 998,244,353.

Input

Input consists of a single line containing two relatively prime, space separated decimal integers, \mathbf{p} and $\mathbf{q}(1 \leq \mathbf{p}, \mathbf{q} \leq 400000)$.

Output

The single output line consists of the integer \mathbf{k}, for which $\mathbf{p}=\mathbf{b}(\mathbf{k})$ and $\mathbf{q}=\mathbf{b}(\mathbf{k}+\mathbf{1})$ printed modulo 998,244,353.

Sample 1:

Sample Input	Sample Output
35	10

Sample 2:

Sample Input	Sample Output
1234763	525909

