

ICPC Greater NY Regional Contest

K • Stern's Sequence

Stern's Triangle is similar to *Pascal's Triangle* in that some values in each row are the sums of values in the previous row. In this case the previous row values are also copied down:

																				1																	
										1										1									1								
					1					1					2					1					2				1					1			
		1			1			2		1			3		2			3		1			3		2		3		1		2			1		1	
1		1	2		1	3		2	3	1		4	3	5	2	5		3	4	1		4	3	5	2	5	3	4	1	3	2		3	1	2	1	1
11	2	1 :	32	3	1	43	5	25	3 -	4 1	5 4	47	38	57	2	75	8	37	4 !	51	5	47	38	5	7 2 3	75	837	4 5	i 1	43	5 2	5	34	11	3 2	313	211

Row n has 2ⁿ -1 elements S(n, k). Where:

S(n, k) = 0 for $k \le 0$ or $k \ge 2^n$

S(1, 1) = 1

S(n+1, 2*k) = S(n, k) for n ≥ 1

 $S(n+1, 2^{k+1}) = S(n, k) + S(n, k+1)$

If we align the S(n, k) values so S(n+1, k) is directly below S(n, k), we get:

```
1
1 1 1
1 1 2 1 2 1 1
1 1 2 1 3 2 3 1 3 2 3 1 2 1 1
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 4 3 5 2 5 3 4 1 3 2 3 1 2 1 1
1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1 4 3 5 2 5 3 4 1 3 2 3 1 2 1 1
```

We see that for **n** sufficiently large, S(n+1, k) = S(n, k).

The sequence of these limiting values in called Stern's Diatomic Sequnce:

b(1), b(2), b(3), ...

It has the property that for every positve rational number, \mathbf{r} , there is exactly one value \mathbf{k} for which $\mathbf{r} = \mathbf{b}(\mathbf{k})/\mathbf{b}(\mathbf{k+1})$.

For example: 3 / 5 = b(10)/ b(11)

Write a program which takes as input a rational number p/q in lowest terms and outputs the value k for which p = b(k) and q = p(k+1). This number can get quite large, so out put it modulo the large prime 998,244,353.

ICPC Greater NY Regional Contest

Input

Input consists of a single line containing two relatively prime, space separated decimal integers, **p** and **q** ($1 \le \mathbf{p}, \mathbf{q} \le 400000$).

Output

The single output line consists of the integer **k**, for which $\mathbf{p} = \mathbf{b}(\mathbf{k})$ and $q = \mathbf{b}(\mathbf{k+1})$ printed modulo 998,244,353.

Sample 1:

Sample Input	Sample Output
3 5	10

Sample 2:

Sample Input	Sample Output
1234 763	525909