ICPC Greater NY Regional Contest

G•Three Triangles

Starting with a $\triangle \mathbf{A B C}$ with vertices $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and sides $\mathbf{a}, \mathbf{b}, \mathbf{c}$ opposite $\mathbf{A}, \mathbf{B}, \mathbf{C}$, respectively:

Construct the altitudes ha, hb and hc to sides $\mathbf{a}, \mathbf{b}, \mathbf{c}$ respectively (red) and the perpendicular bisectors $\mathbf{p a , ~ p b}$ and $\mathbf{p c}$ to sides $\mathbf{a}, \mathbf{b}, \mathbf{c}$ (green):

Let $\mathbf{A}^{\prime}=\mathbf{h c}$ intersect $\mathbf{p b}, \mathbf{B}^{\prime}=$ ha intersect $\mathbf{p c}$ and $\mathbf{C}^{\prime}=\mathbf{h b}$ intersect pa yeilding a new $\mathbf{A A}^{\prime} \mathbf{B}^{\prime} \mathbf{C}^{\prime}$ similar to $A B C$ as shown on the next page.

Finally, let $\mathbf{A}^{\prime \prime}=$ reflection of \mathbf{A}^{\prime} in side $\mathbf{b}, \mathbf{B}^{\prime \prime}=$ reflection of \mathbf{B}^{\prime} in side \mathbf{c} and $\mathbf{C}^{\prime \prime}=$ reflection of \mathbf{C}^{\prime} in side a to obtain yet another similar triangle:

Write a program which takes as input the coordinates of the vertices \mathbf{A}, \mathbf{B} and \mathbf{C} and outputs the areas of the three triangles.

ICPC Greater NY Regional Contest

Input

Input consists of a single line which contains three，space separated floating point values $\mathbf{B x}, \mathbf{C x}, \mathbf{C y}$ in that order（ $\mathbf{- 1 . 0}<=B x, C x, C y<=10.0$ ）．$\Delta A B C$ will have area at least 1．0．The coordinates system is chosen so that $\mathbf{A}=(\mathbf{0}, \mathbf{0})$ is the origin and $\mathbf{B}=(\mathbf{B x}, \mathbf{0})$ lies on the \mathbf{X}－axis． $\mathbf{C}=(\mathbf{C x}, \mathbf{C y})$ is arbitrary．

Output

The output consists of a single line that contains three space separated floating point values to 4 decimal places． $\operatorname{Area}(\Delta A B C)$ ， $\operatorname{Area}\left(\Delta A^{\prime} B^{\prime} \mathbf{C}^{\prime}\right)$ and $\operatorname{Area}\left(\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}\right)$ in that order．

Sample 1：

Sample Input	Sample Output
4.05 .003 .000	$6.00004 .8750 \quad 10.8750$

