B • Comfy Deviations

According to *Wikipedia*, standard deviation is a number used to tell how measurements for a group are spread out from the average (mean or expected value). A low standard deviation means that most of the numbers are close to the average, while a high standard deviation means that the numbers are more spread out. For this problem, you will read in 10 temperature values and use the standard deviation to determine if values are close to the mean temperature. The formula for calculating the standard deviation is:

\[
 s_t = \sqrt{\frac{\sum_{i=1}^{n} (t_i - \bar{t})^2}{n - 1}}
\]

\(S_t \) = Standard deviation of temperature values
\(n \) = The number of data points (10 in this case)
\(t_i \) = Each of the input temperature values
\(\bar{t} \) = The average (mean) of all 10 input values.

Input

Input consists of a single line containing 10 space separated floating point values representing the temperature values to check.

Each temperature value, \(t_1 \ldots t_{10} \) will be in the range \((68 \leq t \leq 80)\)

Output

The output consists of a single line that has the string **COMFY** if the standard deviation of the input values is \(\leq 1.0\) or **NOT COMFY** if the standard deviation of the input values is \(> 1.0\).

Sample 1:

<table>
<thead>
<tr>
<th>Sample Input</th>
<th>Sample Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>79 78 78 79 79 77 78 77 78</td>
<td>COMFY</td>
</tr>
</tbody>
</table>

Sample 2:

<table>
<thead>
<tr>
<th>Sample Input</th>
<th>Sample Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>68.2 68 69.0004 68 69.8 70.123 72 73.10009 74 75.0</td>
<td>NOT COMFY</td>
</tr>
</tbody>
</table>

Note: The Sample Input for Sample 2 is one single line. It is wrapped to two lines above so it fits in the table.