$\mathrm{J} \bullet$ How Many Unicycles in a Wheel?

A Wheel Graph of size \boldsymbol{n} is a cycle of \boldsymbol{n} vertices each of which is connected to a center vertex. Examples of wheel graphs of size 4,5,6 and 8 are shown below:

6

A spanning unicycle in a graph, \mathbf{G}, is a spanning tree in \mathbf{G} with one additional edge added to form a single cycle. Each of the examples below is a spanning unicycle in a wheel graph of size 5:

Write a program to compute the number of different unicycles in a wheel graph of size \boldsymbol{n}. Recall that two subgraphs, $\mathbf{S 1}$ and $\mathbf{S 2}$, of a graph \mathbf{G} are different if there is at least one edge of \mathbf{G} that is in $\mathbf{S 1}$ and not in S2 OR an edge in S2 which is not in $\mathbf{S 1}$.

Input

Input consists of a single line that contains a decimal integer, \boldsymbol{m} ($3<=\boldsymbol{m}<=4000$), which is the size of the wheel graph to find the number of unicycles of.

Output

The single output line consists of the count of unicycles modulo 100007 for the input size \boldsymbol{m}.
Sample 1:

Sample Input	Sample Output
5	170

Sample 2:

Sample Input	Sample Output
1234	17511

