ICPC Greater NY Regional Contest

I• Integers in Rational Bases

Given relatively prime positive integers $\boldsymbol{p}>\boldsymbol{q}$, any positive integer, \boldsymbol{n}, can be written uniquely as a linear combination of powers of $(\boldsymbol{p} / \boldsymbol{q})$ with coefficients in the range $\mathbf{0} \ldots(\boldsymbol{p}-\mathbf{1})$.

$$
\mathrm{n}=\mathrm{a} 0+\mathrm{a} \text { * }(\mathrm{p} / \mathrm{q})+\mathrm{a} 2 *(\mathrm{p} / \mathrm{q})^{2}+\ldots
$$

For instance,

$$
\begin{aligned}
& 15=\mathbf{2 *}(3 / 2)^{4}+1 *(3 / 2)^{3}+0 *(3 / 2)^{2}+1 *(3 / 2)+0 \\
& 15=4 *(7 / 4)^{2}+1 *(7 / 4)+\mathbf{1}
\end{aligned}
$$

Write a program to find the base ($\mathbf{p} / \boldsymbol{q}$) expansion of an integer \boldsymbol{n}. As digits for the base (\mathbf{p} / \mathbf{q}) expansion, use the characters $0-9$, then $\mathbf{A}-\mathbf{Z}$, then $\mathbf{a - z}$.

Input

Input consists of a single line that contains 3 space separated decimal values. They are the numerator p ($3<=p<=62$) of the fractional base, followed by the decimal denominator q (2 $<=q<=(p-1))$ of the fractional base, followed by the positive integer n to be represented in base (p / q). Values of p, q, and n will be chosen so that p and q are relatively prime, the expansion has at most 40 digits and n will fit in a 32-bit unsigned integer.

Output

Your program should produce a single output line containing a string of digits $[0-9, A-Z, a-z]$ with the most significant digit first.

Sample 1:

Sample Input	Sample Output
3215	21010

Sample:

Sample Input	Sample Output
7415	411

Sample 3:

Sample Input	Sample Output
5931987654321	V3bkX4XQVKITSN3ur6TAGF1pSFi

