2017 ACM ICPC Greater New York Regional Contest

B•Sum Squared Digits Function

The Sum Squared Digits function, $\operatorname{SSD}(\boldsymbol{b}, \boldsymbol{n})$ of a positive integer \boldsymbol{n}, in base \boldsymbol{b} is defined by representing \boldsymbol{n} in base \boldsymbol{b} as in:

$$
n=a_{0}+a_{1} * b+a_{2} * b^{2}+\ldots
$$

then:

$$
\operatorname{SSD}(b, n)=a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+\ldots
$$

is the sum of squares of the digits of the representation.
Write a program to compute the Sum Squared Digits function of an input positive number.

Input

The first line of input contains a single decimal integer P, ($1 \leq P \leq 10000$), which is the number of data sets that follow. Each data set should be processed identically and independently.

Each data set consists of a single line of input. It contains the data set number, \boldsymbol{K}, followed by the base, $\boldsymbol{b}(\mathbf{3 \leq b \leq 1 6)}$ as a decimal integer, followed by the positive integer, \boldsymbol{n} (as a decimal integer) for which the Sum Squared Digits function is to be computed with respect to the base \boldsymbol{b}. \boldsymbol{n} will fit in a 32 bit unsigned integer.

Output

For each data set there is a single line of output.
The single line of output consists of the data set number, K, followed by a single space followed by the value of $\operatorname{SSD}(b, \boldsymbol{n})$ as a decimal integer.

Sample Input	Sample Output
3	101234
1 10 120 2 3 98765 3 2 19 $\mathbf{3} 987654321$	369

