

Greater New York Region 2016

E•Permutation Descent Counts

Given a positive integer, \boldsymbol{N}, a permutation of order \boldsymbol{N} is a one-to-one (and thus onto) function from the set of integers from $\mathbf{1}$ to \boldsymbol{N} to itself. If \boldsymbol{p} is such a function, we represent the function by a list of its values:

$$
[\boldsymbol{p}(\mathbf{1}) \boldsymbol{p}(\mathbf{2}) \ldots \mathbf{p}(N)]
$$

For example,
[5624713] represents the function from $\{1 \ldots \mathbf{7}\}$ to itself which takes $\mathbf{1}$ to $\mathbf{5}$, $\mathbf{2}$ to $\mathbf{6}, \ldots, \mathbf{7}$ to 3 .
For any permutation \boldsymbol{p}, a descent of \boldsymbol{p} is an integer \boldsymbol{k} for which $\boldsymbol{p}(\boldsymbol{k})>\boldsymbol{p}(\boldsymbol{k}+\mathbf{1})$. For example, the permutation [5624713] has a descent at $2(6>2)$ and $5(7>1)$.

For permutation $p, \operatorname{des}(p)$ is the number of descents in p. For example, $\operatorname{des}\left(\left[\begin{array}{l}6 \\ 6 \\ 2\end{array} \mathbf{7 1 3} \mathbf{1}\right]\right)=\mathbf{2}$. The identity permutation is the only permutation with $\operatorname{des}(\boldsymbol{p})=0$. The reversing permutation with $p(k)=N+\mathbf{1 - k}$ is the only permutation with $\operatorname{des}(p)=\mathbf{N}-\mathbf{1}$.

The permutation descent count (PDC) for given order \boldsymbol{N} and value \boldsymbol{v} is the number of permutations \boldsymbol{p} of order \boldsymbol{N} with $\operatorname{des}(\boldsymbol{p})=\boldsymbol{v}$. For example:

```
PDC(3,0) = 1 {[ [12 < 3 ] }
```



```
PDC(3, 2)=1{[[\begin{array}{llll}{\mathbf{2}}&{1}\end{array}}
```

Write a program to compute the PDC for inputs \boldsymbol{N} and \boldsymbol{v}. To avoid having to deal with very large numbers, your answer (and your intermediate calculations) will be computed modulo 1001113.

Input

The first line of input contains a single integer $\boldsymbol{P},(\mathbf{1} \leq \boldsymbol{P} \leq \mathbf{1 0 0 0})$, which is the number of data sets that follow. Each data set should be processed identically and independently.

Each data set consists of a single line of input. It contains the data set number, \boldsymbol{K}, followed by the integer order, $N(\mathbf{2} \leq \boldsymbol{N} \leq \mathbf{1 0 0})$, followed by an integer value, $\boldsymbol{v}(\mathbf{0} \leq \boldsymbol{v} \leq \mathrm{N}-\mathbf{1})$.

Output

For each data set there is a single line of output. The single output line consists of the data set number, K, followed by a single space followed by the PDC of N and v modulo 1001113 as a decimal integer.

Greater New York Region 2016 CN $\begin{aligned} & \text { International Collegiate } \\ & \text { Programming Contest }\end{aligned}$

Sample Input	Sample Output					
4		1				
1	3	1				
2	5	4				
3	8	3				
4	99	50	$	$	3	66
:---	:---					
4	15619					

