B • Triangular Sums

 number of points in a triangular array with n points on side. For example $\mathbf{T}(4)$:

$$
\begin{gathered}
X^{X} X \\
X^{X X X X X}
\end{gathered}
$$

Write a program to compute the weighted sum of triangular numbers:

$$
W(n)=\operatorname{SUM}\left[k=1 . . n ; k^{*} T(k+1)\right]
$$

Input

The first line of input contains a single integer $\mathbf{N},(1 \leq \mathbf{N} \leq 1000)$ which is the number of datasets that follow.

Each dataset consists of a single line of input containing a single integer $\mathbf{n},(1 \leq \mathbf{n} \leq 300)$, which is the number of points on a side of the triangle.

Output

For each dataset, output on a single line the dataset number, (1 through \mathbf{N}), a blank, the value of \mathbf{n} for the dataset, a blank, and the weighted sum, $\mathbf{W}(\mathbf{n})$, of triangular numbers for \mathbf{n}.

Sample Input	Sample Output
4	1345
3	24105
4	35210
5	4102145
10	

